Spatial adaptation in heteroscedastic regression: propagation approach
From MaRDI portal
Publication:1950843
DOI10.1214/12-EJS693zbMath1281.62090arXiv0912.4489MaRDI QIDQ1950843
Publication date: 28 May 2013
Published in: Electronic Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0912.4489
propagationadaptive estimationnonparametric regressionminimax rate of convergenceoracle inequalitiesmodel misspecificationLepski's methodheteroscedastic data
Related Items
Adaptive estimation in the single-index model via oracle approach ⋮ Improved local quantile regression ⋮ Comment on: ``Local quantile regression
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Asymptotically efficient estimators for nonparametric heteroscedastic regression models
- Variance estimation for high-dimensional regression models
- Convergence of linear and nonlinear nonparametric estimates of kernel type
- Parameter tuning in pointwise adaptation using a propagation approach
- Concentration inequalities and model selection. Ecole d'Eté de Probabilités de Saint-Flour XXXIII -- 2003.
- Gaussian model selection with an unknown variance
- Robust reconstruction of functions by the local-approximation method
- Optimal rates of convergence for nonparametric estimators
- Consistent nonparametric regression. Discussion
- Confidence, posterior probability, and the Buehler example
- Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors
- On spatially adaptive estimation of nonparametric regression
- Optimal pointwise adaptive methods in nonparametric estimation
- Multivariate locally weighted least squares regression
- Generalized likelihood ratio statistics and Wilks phenomenon
- Sharp oracle inequalities for aggregation of affine estimators
- Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression
- Model selection by resampling penalization
- Exponential bounds for minimum contrast estimators
- Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression
- Local Likelihood Estimation
- Sequential Design and Estimation in Heteroscedastic Nonparametric Regression
- Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case
- Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models
- Robust Locally Weighted Regression and Smoothing Scatterplots
- Local Regression and Likelihood
- Ideal spatial adaptation by wavelet shrinkage
- Spatially Adaptive Estimation via Fitted Local Likelihood Techniques
- On Information and Sufficiency
- Introduction to nonparametric estimation
- Maximum Likelihood Estimation of Misspecified Models
- Gaussian model selection
- Nonlinear estimation in anisotropic multi-index denoising