Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces \(L^{(1, \varphi)}(G)\) over nondoubling measure spaces
DOI10.1155/2013/984259zbMath1275.46017OpenAlexW2059145080WikidataQ59012829 ScholiaQ59012829MaRDI QIDQ1951098
Tetsu Shimomura, Yoshihiro Sawano
Publication date: 29 May 2013
Published in: Journal of Function Spaces and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2013/984259
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Analysis on metric spaces (30L99)
Related Items (4)
Cites Work
- Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents
- Orlicz-Morrey spaces and fractional operators
- Fourier multipliers on Triebel-Lizorkin-type spaces
- Hardy spaces with variable exponents and generalized Campanato spaces
- Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means
- Dual properties of Triebel-Lizorkin-type spaces and their applications
- Boundedness of the Riesz potential in local Morrey-type spaces
- Generalized Morrey spaces for non-doubling measures
- A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces
- Characterization of the critical Sobolev space on the optimal singularity at the origin
- New Besov-type spaces and Triebel-Lizorkin-type spaces including \(Q\) spaces
- Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications
- An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces \(L^{1,\nu,\beta}(G)\)
- A note on Riesz potentials
- Necessary and sufficient conditions for the boundedness of the maximal operator in local Morrey-type spaces
- Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces
- Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures
- Morrey spaces for non-doubling measures
- On the theory of \({\mathcal L}_{p, \lambda}\) spaces
- \(H^p\) spaces of several variables
- Generalized Stummel class and Morrey spaces
- Some properties of Morrey type Besov-Triebel spaces
- Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces on domains
- Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces
- Orlicz–Morrey spaces and the Hardy–Littlewood maximal function
- Brézis–Gallouët–Wainger type inequality for Besov–Morrey spaces
- Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces for nondoubling measures
- Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data
- Navier-stokes flow in r3with measures as initial vorticity and morrey spaces
- Besov-Morrey spaces: Function space theory and applications to non-linear PDE
- Hardy-Littlewood Maximal Operator, Singular Integral Operators and the Riesz Potentials on Generalized Morrey Spaces
- Fractional Integration, morrey spaces and a schrödinger equation
- Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators
- The John–Nirenberg type inequality for non-doubling measures
- Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces
- Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces \(L^{(1, \varphi)}(G)\) over nondoubling measure spaces