Regenerative block-bootstrap confidence intervals for tail and extremal indexes
DOI10.1214/13-EJS807zbMath1329.60146MaRDI QIDQ1951155
Patrice Bertail, Jessica Tressou, Stéphan Clémençon
Publication date: 29 May 2013
Published in: Electronic Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.ejs/1366896904
confidence intervalsHill estimatorNummelin splitting techniqueextreme value statisticsregenerative Markov chaincycle submaximumextremal indexesregenerative-block bootstrap procedure
Parametric tolerance and confidence regions (62F25) Extreme value theory; extremal stochastic processes (60G70) Statistics of extreme values; tail inference (62G32) Markov chains (discrete-time Markov processes on discrete state spaces) (60J10) Markov renewal processes, semi-Markov processes (60K15)
Related Items (2)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Extreme values statistics for Markov chains via the (pseudo-) regenerative method
- Markov chains and stochastic stability
- Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems
- Regenerative block-bootstrap for Markov chains
- Inference for the limiting cluster size distribution of extreme values
- Approximate regenerative-block bootstrap for Markov chains
- Tail index estimation for dependent data
- Extreme value theory for queues via cycle maxima
- On blocks and runs estimators of the extremal index
- A tail bootstrap procedure for estimating the tail Pareto-index
- Extremal index estimation for a weakly dependent stationary sequence
- Tail index estimation and an exponential regression model
- New estimators for the extremal index and other cluster characteristics
- A sliding blocks estimator for the extremal index
- Estimating a tail exponent by modelling departure from a Pareto distribution
- Extremal indices, geometric ergodicity of Markov chains and MCMC
- Regeneration-based statistics for Harris recurrent Markov chains
- SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS
- Mixing properties of harris chains and autoregressive processes
- Maxima and exceedances of stationary Markov chains
- A splitting technique for Harris recurrent Markov chains
- Comparison of tail index estimators
- Inference for Clusters of Extreme Values
- Applied Probability and Queues
- Extremes and local dependence in stationary sequences
- Contributions to Doeblin's theory of Markov processes
- Using a bootstrap method to choose the sample fraction in tail index estimation
- A comparison of methods for estimating the extremal index
- An introduction to statistical modeling of extreme values
This page was built for publication: Regenerative block-bootstrap confidence intervals for tail and extremal indexes