The Berry phase subject to \(q\)-deformed magnetic field
From MaRDI portal
Publication:1952591
DOI10.1007/s11128-012-0420-9zbMath1264.81229OpenAlexW2070728267MaRDI QIDQ1952591
Gangcheng Wang, Kang Xue, Guijiao Du, Chunfeng Wu
Publication date: 31 May 2013
Published in: Quantum Information Processing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11128-012-0420-9
Groups and algebras in quantum theory and relations with integrable systems (81R12) Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory (81Q70)
Cites Work
- Adiabatic Berry phase in an atom-molecule conversion system
- A q-difference analogue of \(U({\mathfrak g})\) and the Yang-Baxter equation
- A \(q\)-analogue of \(U(\mathfrak{gl}(N+1))\), Hecke algebra, and the Yang-Baxter equation
- Quantum R matrix for the generalized Toda system
- On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q
- The q-deformed boson realisation of the quantum group SU(n)qand its representations
- Quantal phase factors accompanying adiabatic changes
- Some realization of the quantum algebra Uq(su(2))
- q-DEFORMATIONS OF QUANTUM SPIN CHAINS WITH EXACT VALENCE-BOND GROUND STATES