An asymptotic formula for \(r\)-Bell numbers with real arguments
From MaRDI portal
Publication:1952659
DOI10.1155/2013/274697zbMath1283.11045OpenAlexW2065004188WikidataQ58994720 ScholiaQ58994720MaRDI QIDQ1952659
Roberto B. Corcino, Cristina B. Corcino
Publication date: 3 June 2013
Published in: ISRN Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2013/274697
Bell and Stirling numbers (11B73) Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60)
Related Items (8)
Solutions of neutral delay differential equations using a generalized Lambert \(W\) function ⋮ The estimation of the zeros of the Bell and \( r\)-Bell polynomials ⋮ On the generalization of the Lambert $W$ function ⋮ The noncentral version of the Whitney numbers: a comprehensive study ⋮ On the structure of the solution set of a generalized Euler-Lambert equation ⋮ Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the \(r\)-Lambert \(W\) function ⋮ Параметрические модели случайных $r$-подстановок и $r$-разбиений и их вероятностно-статистический анализ ⋮ On the coefficients of power sums of arithmetic progressions
Cites Work
- A new formula for the Bernoulli polynomials
- On generalized Bell polynomials
- The \(r\)-Stirling numbers
- New properties of \(r\)-Stirling series
- On the maximum of \(r\)-Stirling numbers
- On Stirling Numbers for Complex Arguments and Hankel Contours
- ASYMPTOTIC ESTIMATES FOR GENERALIZED STIRLING NUMBERS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: An asymptotic formula for \(r\)-Bell numbers with real arguments