Realizable Galois module classes over the group ring for non abelian extensions
From MaRDI portal
Publication:1955963
DOI10.5802/aif.2762zbMath1316.11105OpenAlexW605691493MaRDI QIDQ1955963
Bouchaïb Sodaïgui, Nigel P. Byott
Publication date: 19 June 2013
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/10871/11745
embedding problemGalois module structurecyclic codeslocally free class grouprings of algebraic integersStickelberger idealrealizable classesFröhlich-Lagrange resolvent
Related Items (6)
On Steinitz classes, realizable Galois module classes and embedding problems for non-abelian extensions of degree a power of 2 ⋮ Realizable classes of nonabelian extensions of order \(p^3\) ⋮ On Steinitz classes of nonabelian Galois extensions and \(p\)-ary cyclic Hamming codes ⋮ On realizable Galois module classes by the inverse different ⋮ Structure galoisienne relative de la racine carrée de la codifférente d’extensions métacycliques non abéliennes ⋮ Sur la structure galoisienne relative de puissances de la différente et idéaux de stickelberger
Cites Work
- On realizable Galois module classes and Steinitz classes of nonabelian extensions
- Steinitz classes of tamely ramified Galois extensions of algebraic number fields
- Realizable classes of metacylic extensions of degree \(lm\)
- On Fröhlich's conjecture for rings of integers of tame extensions
- Tame realisable classes over Hopf orders
- ``Galois module structure of quaternion extensions of degree 8
- Realizable classes by non-abelian metacyclic extensions and Stickelberger elements
- Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring
- Galois module structure of elementary abelian extensions
- Realizable classes of tetrahedral extensions
- Hopf orders and a generalization of a theorem of L. R. McCulloh
- Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8
- Relative Galois module structure of octahedral extensions
- Classes réalisables d'extensions non abéliennes
- Galois module structure of abelian extensions.
- Arithmetic and Galois module structure for tame extensions.
- Realizable Galois module classes for tetrahedral extensions
- Classes de Steinitz d'extensions quaternioniennes généralisées de degré 4p r
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Realizable Galois module classes over the group ring for non abelian extensions