Galois co-descent for étale wild kernels and capitulation
From MaRDI portal
Publication:1965851
DOI10.5802/aif.1746zbMath0951.11029OpenAlexW2330445913MaRDI QIDQ1965851
Abbas Movahhedi, Manfred Kolster
Publication date: 1 March 2000
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2000__50_1_35_0
Iwasawa theorywild kernelGreenberg's conjectureétale cohomologyétale \(K\)-theorycodescentétale capitulation
Related Items (16)
Norm index formula for the Tate kernels and applications ⋮ A genus formula for the wild étale kernel ⋮ On the cyclotomic norms and the Leopoldt and Gross-Kuz'min conjectures ⋮ VALUES AT s = -1 OF L-FUNCTIONS FOR MULTI-QUADRATIC EXTENSIONS OF NUMBER FIELDS, AND THE FITTING IDEAL OF THE TAME KERNEL ⋮ Poitou–Tate duality for totally positive Galois cohomology ⋮ Tame kernels of cubic cyclic fields ⋮ On λ-invariants of number fields and étale cohomology ⋮ Tate kernels and capitulation ⋮ A genus formula for the positive étale wild kernel ⋮ Étale analogs of \(p\)-tower class field ⋮ Logarithmic approach of the étale wild kernels of number fields. ⋮ On universal norms and the first layers of \(\mathbb Z_p\)-extensions of a number field ⋮ The analogue of the Gauss class number problem in motivic cohomology ⋮ Bounds for étale capitulation kernels. II ⋮ Capitulation for even \(K\)-groups in the cyclotomic \(\mathbb Z_p\)-extension ⋮ On the splitting of the exact sequence, relating the wild and tame kernels
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Approximating \(K_ *(\mathbb{Z})\) through degree five
- On regular number fields
- On \(\mathbb{Z}_ p\)-torsion of some Galois modules
- Über gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Regulators and Iwasawa modules
- Two comparison theorems in étale cohomology; applications
- \(K_ 3\) and \(p\)- adic Riemann-Hurwitz formulas
- Logarithmic classes of number fields
- \(K_4(\mathbb{Z})\) is the trivial group
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- Codescent in étale \(K\)-theory and number fields
- An idelic approach to the wild kernel
- Galois descent and \(K_ 2\) of number fields
- Cohomologie galoisienne. Cours au Collège de France, 1962--1963. Seconde édition.
- Sur les p -extensions des corps p -rationnels
- Algebraic and Etale K-Theory
- On the product formula in Galois groups.
- On Sylow 2-subgroups of K2OF for quadratic number fields F.
- On the Iwasawa Invariants of Totally Real Number Fields
- Tame kernels under relative quadratic extensions and Hilbert symbols
- Two-primary algebraic 𝐾-theory of rings of integers in number fields
- THE GROUP $ K_3$ FOR A FIELD
- Analogues supérieurs du noyau sauvage
- Introduction to Algebraic K-Theory. (AM-72)
- THE TATE MODULE FOR ALGEBRAIC NUMBER FIELDS
This page was built for publication: Galois co-descent for étale wild kernels and capitulation