An integer programming problem and rank decomposition of block upper triangular matrices
From MaRDI portal
Publication:1968759
DOI10.1016/S0024-3795(99)00219-0zbMath0951.15013OpenAlexW2090638047WikidataQ114850250 ScholiaQ114850250MaRDI QIDQ1968759
Albert P. M. Wagelmans, Harm Bart
Publication date: 13 December 2000
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0024-3795(99)00219-0
integer programmingadditive decompositionFarkas' Lemmarank constraintsrank decompositionblock upper triangular matricessums of idempotent elements in Banach algebras
Related Items
Sums of idempotents and logarithmic residues in zero pattern matrix algebras, Logarithmic residues, generalized idempotents, and sums of idempotents in Banach algebras, Unions of rank/trace complete preorders, Rank decomposition under zero pattern constraints and \(\mathsf{L}\)-free directed graphs, Rank decomposition in zero pattern matrix algebras, Additive decomposition of matrices under rank conditions and zero pattern constraints
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Zero sums of idempotents in Banach algebras
- Logarithmic residues in Banach algebras
- Sums of idempotents
- The length problem for a sum of idempotents
- Logarithmic residues, generalized idempotents, and sums of idempotents in Banach algebras
- Finite sums of idempotents and logarithmic residues on connected domains
- Sums of idempotent matrices
- When is a matrix a sum of idempotents?