A variational principle for eigenvalues of pencils of Hermitian matrices
From MaRDI portal
Publication:1969515
DOI10.1007/BF01228041zbMath0971.47008OpenAlexW2036847850MaRDI QIDQ1969515
Qiang Ye, Paul A. Binding, Branko Najman
Publication date: 4 November 2001
Published in: Integral Equations and Operator Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01228041
Eigenvalues, singular values, and eigenvectors (15A18) Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones) (47A56)
Related Items
Extensions of Wielandt’s min–max principles for positive semi-definite pencils ⋮ Wielandt and Ky-Fan theorem for matrix pairs. ⋮ Trace minimization principles for positive semi-definite pencils ⋮ Matrix pencils and existence conditions for quadratic programming with a sign-indefinite quadratic equality constraint ⋮ Relative perturbation theory for a class of diagonalizable Hermitian matrix pairs ⋮ A Block Arnoldi Method for the SPN Equations
Cites Work
- Matrices and indefinite scalar products
- The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil
- On some mathematical principles in the linear theory of damped oscillations of continua I
- A minimax characterization for eigenvalues of Hermitian pencils. II
- Variational principles for indefinite eigenvalue problems
- Über eine Klasse \(J\)-selbstadjungierter Operatoren
- A minimax characterization for eigenvalues of Hermitian pencils
- Second Order Elliptic Equations with Degenerate Weight
- Variational Principles without Definiteness Conditions
- Minimaxprinzipe zur Bestimmung der Eigenwerte $J$-nichtnegativer Operatoren.
- A Variational Principle in Krein Space
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item