Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Flat weakly Miquelian Laguerre planes are ovoidal

From MaRDI portal
Publication:1969661
Jump to:navigation, search

DOI10.1007/BF02940874zbMath0953.51003MaRDI QIDQ1969661

Andreas E. Schroth

Publication date: 19 March 2000

Published in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Search for Journal in Brave)


zbMATH Keywords

bundle theoremovoidal Laguerre planeMiquel conditionaxiom of Veblen-Young


Mathematics Subject Classification ID

Topological nonlinear incidence structures (51H15) Laguerre geometries (51B15)


Related Items (1)

Partial circle geometries and antiregular quadrangles



Cites Work

  • Schließungssätze in Laguerre-Ebenen. (Closure theorems in Laguerre planes)
  • Locally projective-planar lattices which satisfy the bundle theorem
  • Topologische Ovale
  • Ovoidal Laguerre planes are weakly Miquelian
  • Miquelian theorems in Minkowski planes
  • Miquelian theorems in Minkowski planes. I
  • A non-Miquelian Laguerre plane satisfying a theorem of Miquelian type
  • Miquelian theorems in Minkowski-planes. III
  • Compact projective planes. With an introduction to octonion geometry
  • Locally projective spaces which satisfy the bundle theorem
  • Topologische Laguerreebenen. I
  • Topologische Laguerreebenen, II
  • Die Sieben-Punkte-Ausartungen des Satzes von Miquel in Möbiusebenen




This page was built for publication: Flat weakly Miquelian Laguerre planes are ovoidal

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1969661&oldid=14426991"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 16:39.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki