Study of \(L(s,\chi)/\pi^s\) for \(L\)-functions relative to \(\mathbb{F}_q((T^{-1}))\) and associated to characters of degree 1
From MaRDI portal
Publication:1975050
DOI10.5802/JTNB.256zbMath0994.11027OpenAlexW2028548968MaRDI QIDQ1975050
Publication date: 3 April 2000
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1999__11_2_369_0
Drinfel'd modules; higher-dimensional motives, etc. (11G09) Transcendence theory of Drinfel'd and (t)-modules (11J93) Zeta and (L)-functions in characteristic (p) (11M38)
Related Items (6)
Values of certain \(L\)-series in positive characteristic ⋮ Algebraic independence of values of Goss \(L\)-functions at \(s=1\) ⋮ Mean values of Goss \(L\)-functions and Dedekind sums ⋮ Transcendence of \(L(1,\chi_s)/\pi\) in positive characteristic. A simple automata-style proof ⋮ Transcendence of \(L(1,\chi_{s})/\Pi\) and automata ⋮ Multiple Dedekind–Rademacher sums in function fields
Cites Work
- Unnamed Item
- Transcendence and special zeta values in characteristic p
- On a new type of \(L\)-function for algebraic curves over finite fields
- Transcendence of the values of the Carlitz zeta function by Wade's method
- Irrationality measures and transcendence in positive characteristic
- Certain quantities transcendental over \(\text{GF}(p^n,x)\)
- Sur la transcendance de la série formelle Π
This page was built for publication: Study of \(L(s,\chi)/\pi^s\) for \(L\)-functions relative to \(\mathbb{F}_q((T^{-1}))\) and associated to characters of degree 1