The class number one problem for some non-abelian normal CM-fields of degree 24
From MaRDI portal
Publication:1975051
DOI10.5802/jtnb.257zbMath1010.11063OpenAlexW2323709746MaRDI QIDQ1975051
Ryotaro Okazaki, Stéphane R. Louboutin, Franz Lemmermeyer
Publication date: 3 April 2000
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1999__11_2_387_0
Other number fields (11R21) Algebraic number theory computations (11Y40) Class numbers, class groups, discriminants (11R29)
Related Items
The class number one problem for some non-abelian normal CM-fields of degree 48 ⋮ Explicit Lower bounds for residues at 𝑠=1 of Dedekind zeta functions and relative class numbers of CM-fields ⋮ Unnamed Item ⋮ Class number one problem for normal CM-fields ⋮ The class number one problem for some non-normal CM-fields of degree \(2p\) ⋮ Computation of L(0, χ) and of relative class numbers of CM-fields ⋮ Some explicit upper bounds for residues of zeta functions of number fields taking into account the behavior of the prime \(2\) ⋮ The zeros of Dedekind zeta functions and class numbers of CM-fields ⋮ CM-fields with relative class number one ⋮ Class numbers of imaginary quadratic fields ⋮ Real zeros of Dedekind zeta functions
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Explicit upper bounds of the residue at the point 1 of zeta functions of certain number fields
- Exercices dyadiques
- KANT V4
- Unramified quaternion extensions of quadratic number fields
- Some effective cases of the Brauer-Siegel theorem
- Dihedral CM fields with class number one
- Sur les extensions de groupe de Galois Ã₄
- Upper Bounds on |L(1, χ)| and Applications
- Tables of octic fields with a quartic subfield
- Lower Bounds for Relative Class Numbers of CM-Fields
- Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one
- The class number one problem for the non-abelian normal CM-fields of degree 16
- The Class Number One Problem for Some Non-Abelian Normal CM-Fields of 2-Power Degrees
- Determination of all imaginary abelian sextic number fields with class number ≤ 11
- The class number one problem for some non-abelian normal CM-fields
- Inclusion of CM-fields and divisibility ofrelative class numbers
- Ideal class groups of cyclotomic number fields I
- Dyadic exercises for octahedral extensions
- Classnumbers and unit signatures
- Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers. I.