Toeplitz matrices with an exponential growth of entries and the first Szegő limit theorem
From MaRDI portal
Publication:1975488
DOI10.1006/jfan.1999.3543zbMath0967.47022OpenAlexW2071615058MaRDI QIDQ1975488
Publication date: 27 August 2001
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1999.3543
Related Items (8)
Some identities for determinants of structured matrices ⋮ Szegő limits for infinite Toeplitz matrices determined by the Taylor series of two rational functions ⋮ Discrete Dirac systems on the semiaxis: rational reflection coefficients and Weyl functions ⋮ On the inversion of the block double-structured and of the triple-structured Toeplitz matrices and on the corresponding reflection coefficients ⋮ On Szegő's theorem for a nonclassical case ⋮ Arov-Krein entropy functionals and indefinite interpolation problems ⋮ New ``Verblunsky-type coefficients of block Toeplitz and Hankel matrices and of corresponding Dirac and canonical systems ⋮ On the structure of the inverse to Toeplitz-block Toeplitz matrices and of the corresponding polynomial reflection coefficients
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some generalizations of Szegö's first limit theorem
- Szegö-Kac-Achiezer formulas in terms of realizations of the symbol
- Toeplitz operators and related topics. The Harold Widom Anniversary Volume. Workshop on Toeplitz and Wiener-Hopf Operators, Santa Cruz, CA, USA, September 20-22, 1992
- Toeplitz determinants with one Fisher-Hartwig singularity
- Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im RaumeIIx zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen
- Factorization problems and operator identities
- Toeplitz Operators with Piecewise Quasisectorial Symbols
- Integral equations with difference kernels on finite intervals
This page was built for publication: Toeplitz matrices with an exponential growth of entries and the first Szegő limit theorem