On the \(\Pi\)-operator in hyperholomorphic function theory
From MaRDI portal
Publication:1975587
DOI10.1007/BF03041935zbMath0947.30036OpenAlexW1966810234WikidataQ58038961 ScholiaQ58038961MaRDI QIDQ1975587
Klaus Gürlebeck, Michael V. Shapiro, Uwe Kaehler
Publication date: 27 April 2000
Published in: Advances in Applied Clifford Algebras (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf03041935
Related Items
On \((\phi,\psi)\)-inframonogenic functions in Clifford analysis ⋮ On some structural sets and a quaternionic (φ,ψ)-hyperholomorphic function theory ⋮ On weighted Dirac operators and their fundamental solutions for anisotropic media ⋮ On the \(\Pi\)-operator in Clifford analysis ⋮ Iterated generalized Dirac operators of mixed sides ⋮ On the \(\phi \)-hyperderivative of the \(\psi \)-Cauchy-type integral in Clifford analysis ⋮ A short note on the local solvability of the quaternionic Beltrami equation ⋮ Reconstruction of solutions to a generalized Moisil-Teodorescu system in Jordan domains with rectifiable boundary ⋮ On weighted dirac operators and their fundamental solutions ⋮ Isomorphisms of partial differential equations in Clifford analysis ⋮ On a generalized Lamé-Navier system in \(\mathbb{R}^3\)
Cites Work
- On the Bergmann kernel function in hyperholomorphic analysis
- Definition and properties of a hypercomplex singular integral operator
- On a spatial generalization of the complex \(\Pi\)-operator
- Anwendung der analytischen Theorie der Quaternionen zur Lösung räumlicher Probleme der linearen Elastizität in beschränkten Gebieten
- Differentiation of the Martinelli‐Bochner Integrals and the Notion of Hyperderivability
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item