Left invariant Poisson structures on classical non-compact simple Lie groups
From MaRDI portal
Publication:1976613
DOI10.1007/BF02773218zbMath0951.22010WikidataQ115391653 ScholiaQ115391653MaRDI QIDQ1976613
Publication date: 19 September 2000
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Poisson structureLie groupYang-Baxter equationreal simple Lie groupsleft invariant Poisson structure
Infinite-dimensional Lie (super)algebras (17B65) Infinite-dimensional Lie groups and their Lie algebras: general properties (22E65)
Related Items (max. 100)
Uniqueness of left invariant symplectic structures on the affine Lie group ⋮ Notes on \(\beta \)-deformations of the pure spinor superstring in \(AdS_{5}\times S^{5}\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Lie groups with left-invariant symplectic or Kählerian structures
- Poisson Lie groups, dressing transformations, and Bruhat decompositions
- On quadratic Poisson structures
- On the subalgebras \({\mathfrak g}_ 0\) and \({\mathfrak g}_{ev}\) of semisimple graded Lie algebras
- The affine group as symplectic manifold
- Lectures on the geometry of Poisson manifolds
- Poisson structures on the Lorentz group
- Godbillon-Vey classes of symplectic foliations
- Parameter-dependent solutions of the classical Yang-Baxter equation on \(sl(n,\mathbb{C})\)
- Uniqueness of left invariant symplectic structures on the affine Lie group
- The maximal subgroups of the classical groups
- Graded Lie Algebras of the Second Kind
- The maximal solvable subgroups of the SU(p,q) groups and all subgroups of SU(2,1)
- Constant solutions of Yang-Baxter equation for $\mathfrak{sl}(2)$ and $\mathfrak{sl}(3)$.
- Symplectic Homogeneous Spaces
- Solutions of the classical Yang-Baxter equation for simple Lie algebras
This page was built for publication: Left invariant Poisson structures on classical non-compact simple Lie groups