Direct images in non-archimedean Arakelov theory
From MaRDI portal
Publication:1977471
DOI10.5802/aif.1758zbMath0969.14015arXivmath/9911116OpenAlexW1965039509MaRDI QIDQ1977471
Christophe Soule, Henri A. Gillet
Publication date: 17 May 2000
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/9911116
intersection theoryArakelov theorydirect imagearithmetic Chow groupsRiemann-Roch-Grothendieck theorem
Riemann-Roch theorems (14C40) Local ground fields in algebraic geometry (14G20) Arithmetic varieties and schemes; Arakelov theory; heights (14G40) (Equivariant) Chow groups and rings; motives (14C15)
Related Items
Torification and factorization of birational maps, On the arithmetic Chern character, Functorial factorization of birational maps for qe schemes in characteristic 0
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characteristic classes for algebraic vector bundles with Hermitian metric. I
- Determinants of Cauchy-Riemann operators on a Riemann surface
- Conductor, discriminant, and the Noether formula of arithmetic surfaces
- Arithmetic intersection theory
- Analytic torsion and the arithmetic Todd genus. (With an appendix by D. Zagier)
- Riemann-Roch for singular varieties
- An arithmetic Riemann-Roch theorem
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Critères de platitude et de projectivité. Techniques de platification d'un module. (Criterial of flatness and projectivity. Technics of flatification of a module.)
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 3: Exp. IX--XIX
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div".
- Torification and factorization of birational maps