Singular integrals on regular curves in the Heisenberg group
From MaRDI portal
Publication:1983077
DOI10.1016/j.matpur.2021.07.004zbMath1483.43009arXiv1911.03223OpenAlexW3185401603WikidataQ109744549 ScholiaQ109744549MaRDI QIDQ1983077
Tuomas Orponen, Katrin S. Fässler
Publication date: 15 September 2021
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.03223
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Length, area, volume, other geometric measure theory (28A75) Analysis on other specific Lie groups (43A80) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03)
Related Items
Singular integrals on \(C_{w^\ast}^{1,\alpha}\) regular curves in Banach duals ⋮ Singular integrals on \(C^{1, \alpha}\) regular curves in Carnot groups ⋮ Coronizations and big pieces in metric spaces ⋮ Sub-elliptic boundary value problems in flag domains ⋮ Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory
- The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions
- On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1
- A counterexample for the geometric traveling salesman problem in the Heisenberg group
- Differentiability of intrinsic Lipschitz functions within Heisenberg groups
- An upper bound for the length of a traveling salesman path in the Heisenberg group
- Rectifiable sets and the traveling salesman problem
- Geodesics in the Heisenberg group
- La solution des conjectures de Calderon
- A boundedness criterion for generalized Calderón-Zygmund operators
- Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains
- The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I
- The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. II
- L'intégrale de Cauchy définit un opératuer borne sur \(L^ 2 \)pour les courbes lipschitziennes
- Potential techniques for boundary value problems on \(C^1\)-domains
- Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials
- Removable sets for Lipschitz harmonic functions in the plane
- The traveling salesman theorem in Carnot groups
- Vertical perimeter versus horizontal perimeter
- Lipschitz and bi-Lipschitz functions
- Calderon-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderon
- Singular integrals on self-similar sets and removability for Lipschitz harmonic functions in Heisenberg groups
- Boundedness of singular integrals on \(C^{1,{\alpha}}\) intrinsic graphs in the Heisenberg group
- Nonnegative kernels and 1-rectifiability in the Heisenberg group
- Singular integrals on Ahlfors-David regular subsets of the Heisenberg group
- Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group
- The geometric traveling salesman problem in the Heisenberg group
- \(L^ 2\) solvability and representation by caloric layer potentials in time-varying domains
- The traveling salesman problem in the Heisenberg group: Upper bounding curvature
- Characterizations of intrinsic rectifiability in Heisenberg groups
- Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group
- Dorronsoro's theorem in Heisenberg groups
- Opérateurs intégraux singuliers sur certaines courbes du plan complexe
- Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality
- Opérateurs d'intégrale singulière sur les surfaces régulières
- A Criterion for the Boundedness of Singular Integrals on Hypersurfaces
- Cauchy integrals on Lipschitz curves and related operators
- Quantitative Rectifiability and Lipschitz Mappings
- The method of layer potentials for the heat equation in time-varying domains
- Characterization of Subsets of Rectifiable Curves in R n
- A T(b) theorem with remarks on analytic capacity and the Cauchy integral
- Classical Fourier Analysis
- Modern Fourier Analysis
- Intrinsic Lipschitz Graphs and Vertical β-Numbers in the Heisenberg Group
- Rectifiability and perimeter in the Heisenberg group