Strong discrete Morse theory and simplicial L-S category: a discrete version of the Lusternik-Schnirelmann theorem
DOI10.1007/s00454-019-00116-8zbMath1444.55011arXiv1612.08840OpenAlexW2964961059MaRDI QIDQ1985296
Desamparados Fernández-Ternero, Nicholas A. Scoville, José Antonio Vilches, Enrique Macias-Virgós
Publication date: 7 April 2020
Published in: Discrete \& Computational Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1612.08840
discrete Morse theorystrong homotopy typestrong collapsibilitysimplicial Lusternik-Schnirelmann category
Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) (55M30) Simplicial sets and complexes in algebraic topology (55U10) Discrete Morse theory and related ideas in manifold topology (57Q70)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lusternik-Schnirelmann category for cell complexes and posets
- Discrete Morse theory for computing cellular sheaf cohomology
- Lusternik-Schnirelmann category for simplicial complexes
- Lusternik-Schnirelmann category of simplicial complexes and finite spaces
- Strong homotopy types, nerves and collapses
- On the Lusternik-Schnirelmann category of a simplicial map
- Morse theory for cell complexes
- Simplicial Lusternik-Schnirelmann category
- Algebraic topology of finite topological spaces and applications
- Membrane parallelism for discrete Morse theory applied to digital images
- Lusternik-Schnirelman theory on Banach manifolds
- Morse Theory. (AM-51)
- Irreducible triangulations of the M\"obius band
This page was built for publication: Strong discrete Morse theory and simplicial L-S category: a discrete version of the Lusternik-Schnirelmann theorem