Sobolev mapping of some holomorphic projections
From MaRDI portal
Publication:1985311
DOI10.1007/s12220-019-00345-6zbMath1446.32005arXiv1904.04383OpenAlexW3100468855WikidataQ126402290 ScholiaQ126402290MaRDI QIDQ1985311
Jeffery D. Mcneal, Luke D. Edholm
Publication date: 7 April 2020
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1904.04383
(overlinepartial) and (overlinepartial)-Neumann operators (32W05) Bergman spaces of functions in several complex variables (32A36) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25)
Related Items
Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles ⋮ -regularity of the Bergman projection on quotient domains ⋮ Holomorphic function spaces on the Hartogs triangle ⋮ Sobolev regularity of the canonical solutions to \(\bar{\partial}\) on product domains ⋮ Sobolev mapping of the Bergman projections on generalized Hartogs triangles ⋮ Bergman projection on the symmetrized bidisk ⋮ On the canonical solution of \(\overline{\partial}\) on polydisks ⋮ Unnamed Item ⋮ Harmonic Bergman theory on punctured domains ⋮ Mapping properties of the Bergman projections on elementary Reinhardt domains ⋮ \(L^p\) regularity of Toeplitz operators on generalized Hartogs triangles
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bergman theory of certain generalized Hartogs triangles
- A smoothing property of the Bergman projection
- Estimates for the Bergman and Szegő projections for pseudoconvex domains of finite type with locally diagonalizable Levi form
- Sobolev estimates for the \({\bar \partial}\)-Neumann operator on domains in \({\mathbb{C}}^ n\) admitting a defining function that is plurisubharmonic on the boundary
- Irregularity of the Bergman projection on a smooth bounded domain in \({\mathbb{C}}^ 2\)
- Estimates for the Bergman and Szegö kernels in \({\mathbb{C}}^ 2\)
- Boundary behavior of the Bergman kernel function in \({\mathbb{C}}^ 2\)
- Biholomorphic mappings and the \(\overline\partial\)-problem
- Behavior of the Bergman projection on the Diederich-Fornæss worm
- Pseudoconvex domains: An example with nontrivial nebenhuelle
- Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains
- A simplification and extension of Fefferman's theorem on biholomorphic mappings
- Mapping properties of the Bergman projection on convex domains of finite type
- Estimates on the Bergman kernels of convex domains
- The Szegö projection on convex domains
- Duality and approximation of Bergman spaces
- Bergman subspaces and subkernels: degenerate \(L^p\) mapping and zeroes
- Regularity of the Bergman projection and local geometry of domains
- Irregularity of the Bergman projection on worm domains in \(\mathbb C^{n}\)
- The \(L^{p}\) boundedness of the Bergman projection for a class of bounded Hartogs domains
- Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle
- On maximal Sobolev and Holder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian
- $L^p$ mapping properties of the Bergman projection on the Hartogs triangle
- The Bergman projection on fat Hartogs triangles: $L^p$ boundedness
- 𝐿^{𝑝} regularity of weighted Bergman projections
- The Szego Projection: Sobolev Estimates in Regular Domains
- Classes de Bergman de fonctions harmoniques
- Spaces of Holomorphic Functions in the Unit Ball