Variable exponent fractional integrals in the limiting case \(\alpha (x)p(n) \equiv n\) on quasimetric measure spaces
From MaRDI portal
Publication:1986064
DOI10.1515/gmj-2018-0047zbMath1443.47048OpenAlexW2883123932MaRDI QIDQ1986064
Publication date: 7 April 2020
Published in: Georgian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1515/gmj-2018-0047
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Potential operators (47G40)
Related Items (2)
Professor Stefan G. Samko research: a decade retrospective ⋮ Fractional operators from vanishing Morrey to vanishing Campanato spaces in the variable exponent setting on quasi-metric measure spaces
Cites Work
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Integral operators in non-standard function spaces. Volume 1: Variable exponent Lebesgue and amalgam spaces
- Integral operators in non-standard function spaces. Volume 2: Variable exponent Hölder, Morrey-Campanato and Grand spaces
- Lebesgue and Sobolev spaces with variable exponents
- Lipschitz functions on spaces of homogeneous type
- Lectures on analysis on metric spaces
- Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator
- A note on Riesz fractional integrals in the limiting case \(\alpha(x)p(x) \equiv n\)
- Boundedness of translation invariant operators on Hölder spaces and \(L^ p\)-spaces
- Weighted Estimates of Generalized Potentials in Variable Exponent Lebesgue Spaces on Homogeneous Spaces
- Convolution and potential type operators inLp(x)(Rn)
- Weighted Norm Inequalities for Fractional Integrals
- Unnamed Item
- Unnamed Item
This page was built for publication: Variable exponent fractional integrals in the limiting case \(\alpha (x)p(n) \equiv n\) on quasimetric measure spaces