On using Toeplitz and circulant matrices for Johnson-Lindenstrauss transforms
DOI10.1007/s00453-019-00644-yzbMath1434.68603OpenAlexW2963884121WikidataQ126842206 ScholiaQ126842206MaRDI QIDQ1986965
Casper Benjamin Freksen, Kasper Green Larsen
Publication date: 9 April 2020
Published in: Algorithmica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00453-019-00644-y
Inequalities; stochastic orderings (60E15) Analysis of algorithms and problem complexity (68Q25) Random matrices (probabilistic aspects) (60B20) Computer graphics; computational geometry (digital and algorithmic aspects) (68U05) Toeplitz, Cauchy, and related matrices (15B05) Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science (46B85) Metric embeddings as related to computational problems and algorithms (68R12)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A variant of the Johnson-Lindenstrauss lemma for circulant matrices
- Fast dimension reduction using Rademacher series on dual BCH codes
- Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
- A sparse Johnson
- An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform
- Computational Advertising: Techniques for Targeting Relevant Ads
- Dimensionality Reduction for k-Means Clustering and Low Rank Approximation
- Randomized Dimensionality Reduction for <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Means Clustering
- Johnson-Lindenstrauss lemma for circulant matrices**
- New and Improved Johnson–Lindenstrauss Embeddings via the Restricted Isometry Property
- Sparser Johnson-Lindenstrauss Transforms
- Extensions of Lipschitz mappings into a Hilbert space
- Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
- An elementary proof of a theorem of Johnson and Lindenstrauss
- The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors
- Compressed sensing
- Graph Sparsification by Effective Resistances
This page was built for publication: On using Toeplitz and circulant matrices for Johnson-Lindenstrauss transforms