A spectral Newton-Schur algorithm for the solution of symmetric generalized eigenvalue problems
DOI10.1553/etna_vol52s132zbMath1436.65038OpenAlexW3006038104MaRDI QIDQ1988487
Publication date: 23 April 2020
Published in: ETNA. Electronic Transactions on Numerical Analysis (Search for Journal in Brave)
Full work available at URL: http://etna.mcs.kent.edu/volumes/2011-2020/vol52/abstract.php?vol=52&pages=132-153
Newton's methoddomain decompositionspectral Schur complementssymmetric generalized eigenvalue problem
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Eigenvalues, singular values, and eigenvectors (15A18)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- PRIMME
- Spectral Schur complement techniques for symmetric eigenvalue problems
- On correction equations and domain decomposition for computing invariant subspaces
- Kron's method for symmetric eigenvalue problems
- Domain decomposition methods for eigenvalue problems
- Linearizations for Rational Matrix Functions and Rosenbrock System Polynomials
- The university of Florida sparse matrix collection
- Numerical Methods for Large Eigenvalue Problems
- Beyond Automated Multilevel Substructuring: Domain Decomposition with Rational Filtering
- The Lanczos Algorithm With Partial Reorthogonalization
- A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
- Computation of Derivatives of Repeated Eigenvalues and the Corresponding Eigenvectors of Symmetric Matrix Pencils
- Computing an Eigenvector with Inverse Iteration
- Domain decomposition approaches for accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems
- An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics
- Choosing the Forcing Terms in an Inexact Newton Method
- Computation of Smallest Eigenvalues using Spectral Schur Complements
This page was built for publication: A spectral Newton-Schur algorithm for the solution of symmetric generalized eigenvalue problems