Lower bound for the class number of \(\mathbb{Q} (\sqrt{n^2+4})\)
From MaRDI portal
Publication:1989052
DOI10.1155/2020/9519613zbMath1486.11131OpenAlexW3003294621MaRDI QIDQ1989052
Publication date: 24 April 2020
Published in: International Journal of Mathematics and Mathematical Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2020/9519613
Quadratic extensions (11R11) Units and factorization (11R27) Class numbers, class groups, discriminants (11R29) Zeta functions and (L)-functions of number fields (11R42) Iwasawa theory (11R23)
Related Items (2)
Some criteria for class numbers to be non-one ⋮ A necessary and sufficient condition for \(k=\mathbb{Q}\left ( \sqrt{4 n^2 + 1}\right)\) to have class number \(\omega\left( n\right)+c \)
Cites Work
- Unnamed Item
- Unnamed Item
- Class number 2 criteria for real quadratic fields of Richaud-Degert type
- On the values at negative integers of the zeta-function of a real quadratic field
- Class number 1 criteria for real quadratic fields of Richaud-Degert type
- On the fundamental unit of real quadratic fields with norm 1
- Generalized Dedekind sums and transformation formulae of certain Lambert series
- Lower Bounds for Class Numbers of Real Quadratic Fields
- Lower Bounds for Class Numbers of Real Quadratic and Biquadratic Fields
- Über eine Gattung elementar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper.
- On Real Quadratic Fields Containing Units with Norm -1
This page was built for publication: Lower bound for the class number of \(\mathbb{Q} (\sqrt{n^2+4})\)