A note on critical \(p\)-adic \(L\)-functions
From MaRDI portal
Publication:1995624
DOI10.1007/s10114-020-8396-3zbMath1470.11120arXiv1911.13022OpenAlexW3016722792MaRDI QIDQ1995624
Publication date: 24 February 2021
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.13022
Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Critical slope \(p\)-adic \(L\)-functions of CM modular forms
- Critical \(p\)-adic \(L\)-functions
- A modular interpretation of the trianguline variety
- \(p\)-adic \(L\)-functions and unitary completions of representations of \(p\)-adic reductive groups
- Triangulation of refined families
- On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer
- Overconvergent modular forms and the Fontaine-Mazur conjecture
- A \(p\)-adic Jacquet-Langlands correspondence
- Smoothness and classicality on eigenvarieties
- Ordinary modular forms and companion points on the eigencurve
- On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie). Rédigé avec la colloboration de J. Dieudonné
- Remarks on some locally ℚ p -analytic representations of GL2(F) in the crystalline case
- Cohomology of arithmetic families of (𝜑,Γ)-modules
- Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties
- p-adic modular forms over unitary Shimura curves and local-global compatibility
- Familles p-adiques de formes automorphes pour GLn
- Critical slope p ‐adic L ‐functions
- On the infinite fern of Galois representations of unitary type
This page was built for publication: A note on critical \(p\)-adic \(L\)-functions