Fundamental groupoids for simplicial objects in Mal'tsev categories
From MaRDI portal
Publication:1996057
DOI10.1016/j.jpaa.2020.106620zbMath1459.18004arXiv1911.08986OpenAlexW2991347310MaRDI QIDQ1996057
Publication date: 3 March 2021
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.08986
central extensionsGalois theoryinternal groupoidssimplicial objectsmonotone-light factorizationMal'tsev categories
Equational logic, Mal'tsev conditions (08B05) Abelian categories, Grothendieck categories (18E10) Categories admitting limits (complete categories), functors preserving limits, completions (18A35) Factorization systems, substructures, quotient structures, congruences, amalgams (18A32)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted commutators in semi-abelian categories
- Normalities and commutators
- Diagram chasing in Mal'cev categories
- Pure Galois theory in categories
- Realization of cohomology classes in arbitrary exact categories
- Galois theory of second order covering maps of simplicial sets
- Some remarks on Maltsev and Goursat categories
- Galois theory and a general notion of central extension
- On localization and stabilization for factorization systems
- On the direct image of intersections in exact homological categories
- Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids
- Higher commutator conditions for extensions in Mal'tsev categories
- A relative monotone-light factorization system for internal groupoids
- Central extensions and internal groupoids in Maltsev categories
- Homotopy invariant algebraic structures on topological spaces
- Quasi-categories and Kan complexes
- The denormalized \(3{\times}3\) lemma
- A categorical approach to commutator theory
- A note on the Galois correspondence for commutative rings
- Arithmetical categories and commutator theory
- Mal'cev categories and fibration of pointed objects
- Resolutions, higher extensions and the relative Mal'tsev axiom
- Complexe cotangent et déformations. II
- Groups with Multiple Operators
- Simplicial methods and the interpretation of “triple” cohomology
- Semi-abelian categories