A numerical solution of a class of periodic coupled matrix equations
From MaRDI portal
Publication:1996642
DOI10.1016/j.jfranklin.2020.11.022zbMath1455.65064OpenAlexW3108087516MaRDI QIDQ1996642
Lei Zhang, Lingling Lv, Baowen Wang, Jinbo Chen, Zhe Zhang
Publication date: 25 February 2021
Published in: Journal of the Franklin Institute (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfranklin.2020.11.022
Related Items
An efficient inversion-free method for solving the nonlinear matrix equation \(X^p + \sum_{j=1}^ma_j^*X^{-q_j}a_j=Q\) ⋮ Generalized conjugate direction algorithm for solving generalized coupled Sylvester transpose matrix equations over reflexive or anti-reflexive matrices ⋮ Convergence analysis of Newton method without inversion for solving discrete algebraic Riccati equations ⋮ Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window ⋮ Decomposition‐based over‐parameterization forgetting factor stochastic gradient algorithm for Hammerstein‐Wiener nonlinear systems with non‐uniform sampling ⋮ Multi‐innovation Newton recursive methods for solving the support vector machine regression problems ⋮ Identification of the nonlinear systems based on the kernel functions ⋮ A parametric poles assignment algorithm for high-order linear discrete periodic systems ⋮ The data filtering based multiple‐stage Levenberg–Marquardt algorithm for Hammerstein nonlinear systems ⋮ Structure preserving subspace methods for the general coupled discrete-time periodic matrix equation and its application in antilinear periodic system ⋮ A novel finite-time complex-valued zeoring neural network for solving time-varying complex-valued Sylvester equation ⋮ Weight splitting iteration methods to solve quadratic nonlinear matrix equation \(MY^2+NY+P=0\) ⋮ On the minimum-norm least squares solution of the complex generalized coupled Sylvester matrix equations ⋮ Explicit solutions of conjugate, periodic, time-varying Sylvester equations ⋮ Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations ⋮ Factor gradient iterative algorithm for solving a class of discrete periodic Sylvester matrix equations ⋮ Gradient-based neural networks for solving periodic Sylvester matrix equations
Cites Work
- On asymptotic stability of linear time-varying systems
- On the periodic Sylvester equations and their applications in periodic Luenberger observers design
- Parametric solutions to the discrete periodic regulator equations
- A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations
- Low-rank iterative methods for periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems
- Finite iterative solutions to coupled Sylvester-conjugate matrix equations
- A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation
- An iterative algorithm for discrete periodic Lyapunov matrix equations
- A finite iterative method for solving the general coupled discrete-time periodic matrix equations
- Gradient based iterative algorithm for solving coupled matrix equations
- A relaxed gradient based algorithm for solving generalized coupled Sylvester matrix equations
- A finite iterative algorithm for solving the complex generalized coupled Sylvester matrix equations by using the linear operators
- An SOR implicit iterative algorithm for coupled Lyapunov equations
- Finite iterative solutions to periodic Sylvester matrix equations
- Guaranteed cost control of periodic piecewise linear time-delay systems
- Finite-time stability analysis and stabilization by bounded linear time-varying feedback
- Finite-time stabilization of linear systems by bounded linear time-varying feedback
- Parametric solutions to generalized periodic Sylvester bimatrix equations
- An finite iterative algorithm for sloving periodic Sylvester bimatrix equations
- Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations
- Solving the general coupled and the periodic coupled matrix equations via the extended QMRCGSTAB algorithms
- Robust stability and control of uncertain linear discrete-time periodic systems with time-delay
- A System of Periodic Discrete-time Coupled Sylvester Quaternion Matrix Equations
- New Iterative Algorithms for Solving Coupled Markovian Jump Lyapunov Equations
- On Iterative Solutions of General Coupled Matrix Equations
- Developing the CGLS algorithm for the least squares solutions of the general coupled matrix equations
- Extending the CGLS method for finding the least squares solutions of general discrete-time periodic matrix equations
- Fault Detection and Isolation of Linear Discrete-Time Periodic Systems Using the Geometric Approach