A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations
DOI10.1016/j.matcom.2017.11.002zbMath1484.65193OpenAlexW2769635390MaRDI QIDQ1997028
Jing Chen, Fei Teng, Zhen-Dong Luo
Publication date: 1 March 2021
Published in: Mathematics and Computers in Simulation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.matcom.2017.11.002
proper orthogonal decompositionerror estimatereduced-order Crank-Nicolson finite volume element extrapolating algorithmtwo-dimensional Sobolev equations
Finite difference methods for initial value and initial-boundary value problems involving PDEs (65M06) Extrapolation to the limit, deferred corrections (65B05) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15) Numerical methods for partial differential equations, boundary value problems (65N99) Finite volume methods for initial value and initial-boundary value problems involving PDEs (65M08) Finite volume methods for boundary value problems involving PDEs (65N08)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations
- A fully discrete stabilized mixed finite volume element formulation for the non-stationary conduction-convection problem
- A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems
- A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem
- A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
- Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations
- Reduced-order modeling of the upper tropical Pacific ocean model using proper orthogonal decomposition
- A new stabilized finite volume method for the stationary Stokes equations
- A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation
- A postprocessing finite volume element method for time-dependent Stokes equations
- A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation
- Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model
- Finite element formulation based on proper orthogonal decomposition for parabolic equations
- Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition
- Principal component analysis.
- A new reduced-order FVE algorithm based on POD method for viscoelastic equations
- A reduced-order finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems
- A cooling process according to two-temperature theory of heat conduction
- Finite difference scheme based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations
- On the relationship between finite volume and finite element methods applied to the Stokes equations
- Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]
- A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition
- On the Accuracy of the Finite Volume Element Method for Diffusion Equations on Composite Grids
- An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model
- An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems
- Some Error Estimates for the Box Method
- Characteristic-eddy decomposition of turbulence in a channel
- Turbulence and the dynamics of coherent structures. I. Coherent structures
- Convergence of Finite Volume Schemes for Poisson’s Equation on Nonuniform Meshes
- Mixed and Hybrid Finite Element Methods
- Turbulence, Coherent Structures, Dynamical Systems and Symmetry
- Self-Contained Automated Methodology for Optimal Flow Control
- A Covolume Method Based on Rotated Bilinears for the Generalized Stokes Problem
- Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor
- An error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes
- Error estimates for a finite volume element method for parabolic equations in convex polygonal domains
- Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics
- Analysis of the cell-centred finite volume method for the diffusion equation
- Galerkin proper orthogonal decomposition methods for parabolic problems