Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations
From MaRDI portal
Publication:1998258
DOI10.1016/j.matcom.2020.08.018OpenAlexW3080444122WikidataQ115343826 ScholiaQ115343826MaRDI QIDQ1998258
Publication date: 6 March 2021
Published in: Mathematics and Computers in Simulation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.matcom.2020.08.018
Numerical methods for ordinary differential equations (65Lxx) Functional-differential equations (including equations with delayed, advanced or state-dependent argument) (34Kxx)
Related Items (15)
Wavelet-based approximation for two-parameter singularly perturbed problems with Robin boundary conditions ⋮ Derivative-orthogonal non-uniform B-spline wavelets ⋮ Numerical simulation for generalized space-time fractional Klein-Gordon equations via Gegenbauer wavelet ⋮ Bernoulli collocation method for the third-order Lane-Emden-Fowler boundary value problem ⋮ Generalized Bernoulli-Laguerre polynomials: applications in coupled nonlinear system of variable-order fractional PDEs ⋮ A collocation method for time‐fractional diffusion equation on a metric star graph with η$$ \eta $$ edges ⋮ Numerical solution of some stiff systems arising in chemistry via Taylor wavelet collocation method ⋮ Wavelet collocation methods for solving neutral delay differential equations ⋮ Pell-Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays ⋮ Numerical simulation of Emden-Fowler integral equation with Green's function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods ⋮ A high resolution Hermite wavelet technique for solving space-time-fractional partial differential equations ⋮ A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations ⋮ Wavelet-based approximation with nonstandard finite difference scheme for singularly perturbed partial integrodifferential equations ⋮ A wavelet collocation method based on Gegenbauer scaling function for solving fourth-order time-fractional integro-differential equations with a weakly singular kernel ⋮ A Legendre wavelet collocation method for 1D and 2D coupled time-fractional nonlinear diffusion system
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices
- The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets
- Some properties of Bernoulli polynomials and their generalizations
- Delay differential equations: with applications in population dynamics
- Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations
- The modified chain method for a class of delay differential equations arising in neural networks
- The variational iteration method for solving a neutral functional-differential equation with proportional delays
- Stability of one-leg \(\theta \)-methods for nonlinear neutral differential equations with proportional delay
- Solution of delay differential equation by means of homotopy analysis method
- Ordinary and delay differential equations
- Wavelets theory and its applications. A first course
- Some identities involving Gegenbauer polynomials
- Application of the Haar wavelet method for solution the problems of mathematical calculus
- Nonlinear delay differential equations involving population growth
- Generalization of Gegenbauer wavelet collocation method to the generalized Kuramoto-Sivashinsky equation
- Rational wavelets and their application for solving the heat transfer equations in porous medium
- Bernoulli collocation method for solving linear multidimensional diffusion and wave equations with Dirichlet boundary conditions
- Introduction to the theory and application of differential equations with deviating arguments. Translated from the Russian by John L. Casti
- Uniform inequalities for Gegenbauer polynomials
- The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations
- An application of the Gegenbauer wavelet method for the numerical solution of the fractional Bagley-Torvik equation
- Differential equations: Stability, oscillations, time lags
- An Intracellular Delay-Differential Equation Model of the HIV Infection and Immune Control
- One-step implicit methods or solving delay differential equations
- A computational algorithm for large-scale nonlinear time-delay systems
- A Fully-Discrete Spectral Method for Delay-Differential Equations
- ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME
- Runge Kutta method for delay-differential systems
- Dynamics of a Stage-Structured Population Model on an Isolated Finite Lattice
This page was built for publication: Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations