Chow motives of abelian type over a base
From MaRDI portal
Publication:1999436
DOI10.1007/s40879-018-0270-9zbMath1422.14012OpenAlexW2888004403MaRDI QIDQ1999436
Publication date: 27 June 2019
Published in: European Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40879-018-0270-9
Chern classtracessymmetric powersRiemann-Roch theoremChow motivesnumerical equivalenceprojective bundle theoremPicard bundlesJacobian schemenilpotent correspondencesrelative curves
Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Algebraic cycles (14C25) (Equivariant) Chow groups and rings; motives (14C15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Chow groups are finite dimensional, in some sense
- Picard bundles
- Arakelov Chow groups of abelian schemes, arithmetic Fourier transform, and analogues of the standard conjectures of Lefschetz type
- Nilpotence, radicals and monoidal structures. With an appendix by Peter O'Sullivan.
- Linear determinants with applications to the Picard scheme of a family of algebraic curves
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- The compactified Picard scheme of the compactified Jacobian
- Jacobians and symmetric products
- Néron Models
- Symmetric Products and Jacobians
- The Jacobian Variety of an Algebraic Curve
This page was built for publication: Chow motives of abelian type over a base