Datadriven HOPGD based computational vademecum for welding parameter identification
DOI10.1007/s00466-018-1656-8zbMath1469.74126OpenAlexW2901451285WikidataQ113327171 ScholiaQ113327171MaRDI QIDQ1999553
Nawfal Blal, Ye Lu, Anthony Gravouil
Publication date: 27 June 2019
Published in: Computational Mechanics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00466-018-1656-8
iterative optimization algorithmsparse samplingnon-intrusive reduction methodonline subspace learning method
Learning and adaptive systems in artificial intelligence (68T05) Contact in solid mechanics (74M15) Optimization of other properties in solid mechanics (74P10) Numerical and other methods in solid mechanics (74S99)
Related Items
Cites Work
- Unnamed Item
- Tensor Decompositions and Applications
- Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models
- Virtual charts of solutions for parametrized nonlinear equations
- PGD-based \textit{computational vademecum} for efficient design, optimization and control
- Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems
- Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
- A priori hyperreduction method: an adaptive approach
- Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Application to transport and continuum mechanics.
- A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
- A large time increment approach for cyclic viscoplasticity
- A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations
- A manifold learning approach to data-driven computational elasticity and inelasticity
- An `empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations
- A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality
- Data-based derivation of material response
- Data-driven computational mechanics
- Sensitivity analysis and optimization of thermo-elasto-plastic processes with applications to welding side heater design
- Identification of material properties using indentation test and shape manifold learning approach
- Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation
- Nonlinear Model Reduction via Discrete Empirical Interpolation
- Turbulence, Coherent Structures, Dynamical Systems and Symmetry
- Model order reduction for hyperelastic materials
- Convergence rates of efficient global optimization algorithms
This page was built for publication: Datadriven HOPGD based computational vademecum for welding parameter identification