Fractional maximal function and its commutators on Orlicz spaces
DOI10.1007/s13324-017-0189-1zbMath1416.42019arXiv1803.03069OpenAlexW2963195543MaRDI QIDQ1999814
Vagif S. Guliyev, Fatih Deringoz, Sabir G. Hasanov
Publication date: 27 June 2019
Published in: Analysis and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1803.03069
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25) Lipschitz (Hölder) classes (26A16) Commutators, derivations, elementary operators, etc. (47B47)
Related Items (11)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function
- Factorization theorems for Hardy spaces in several variables
- Mean oscillation and commutators of singular integral operators
- A note on maximal commutators and commutators of maximal functions
- Commutators of the fractional maximal function on variable exponent Lebesgue spaces
- Maximal functions measuring smoothness
- Strong and Weak Type Inequalities for Some Classical Operators in Orlicz Spaces
- On maximal functions in Orlicz spaces
- On Certain Convolution Inequalities
- Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss
- Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces
This page was built for publication: Fractional maximal function and its commutators on Orlicz spaces