Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation
DOI10.1016/j.jsc.2019.02.013zbMath1441.13071arXiv1805.10609OpenAlexW2803949631WikidataQ128312021 ScholiaQ128312021MaRDI QIDQ2000292
Aviva Szpirglas, Marie-Françoise Roy
Publication date: 28 June 2019
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1805.10609
subresultantsmultivariate Hermite interpolationgeneralized Vandermonde determinantsSylvester double sums
Symbolic computation and algebraic computation (68W30) Classical problems, Schubert calculus (14N15) Solving polynomial systems; resultants (13P15) Computational real algebraic geometry (14Q30)
Cites Work
- Unnamed Item
- Sylvester double sums and subresultants
- Inertia characteristics of self-adjoint matrix polynomials
- Double Sylvester sums for subresultants and multi-Schur functions.
- Interpolation for symmetric functions
- An elementary proof of Sylvester's double sums for subresultants
- Symmetric interpolation, Exchange Lemma and Sylvester sums
- Algorithms in real algebraic geometry
This page was built for publication: Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation