Uncertainty principles and time frequency analysis related to the Riemann-Liouville operator
DOI10.1007/s11565-018-0311-9zbMath1430.42005OpenAlexW2898966481MaRDI QIDQ2000600
Besma Amri, Aymen Hammami, Lakhdar Tannech Rachdi
Publication date: 28 June 2019
Published in: Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11565-018-0311-9
inversion formulauncertainty principlewindowed Fourier transformPlancherel theoremlocal uncertainty principletime frequencyannihilating subset
Convolution as an integral transform (44A35) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42A38) Convolution, factorization for one variable harmonic analysis (42A85) Harmonic analysis and PDEs (42B37)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Transformation intégrale de Weyl et théorème de Paley-Wiener associes à un opérateur différentiel singulier sur \((0,\infty)\)
- Best approximation for Weierstrass transform connected with Riemann-Liouville operator
- On the range of the Fourier transform connected with Riemann-Liouville operator
- The uncertainty principle: A mathematical survey
- Foundations of time-frequency analysis
- Time-frequency and time-scale methods. Adaptive decompositions, uncertainty principles, and sampling
- Local uncertainty principles for the Cohen class
- Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators
- BECKNER LOGARITHMIC UNCERTAINTY PRINCIPLE FOR THE RIEMANN–LIOUVILLE OPERATOR
- Inequalities and local uncertainty principles
- Sharp local uncertainty inequalities
- Calderon-reproducing formula for singular partial differential operators
- Uncertainty principle in terms of entropy for the Riemann-Liouville operator
This page was built for publication: Uncertainty principles and time frequency analysis related to the Riemann-Liouville operator