The Einstein-Vlasov-scalar field system with Gowdy or \(T^2\) symmetry in contracting direction
DOI10.1007/s40306-018-0256-1zbMath1419.83033OpenAlexW2793697298WikidataQ130116013 ScholiaQ130116013MaRDI QIDQ2000820
David Tegankong, Alex Lassiye Tchuani, Norbert Noutchegueme
Publication date: 28 June 2019
Published in: Acta Mathematica Vietnamica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40306-018-0256-1
Einsteinglobal existencewave equationsscalar fieldVlasovgeodesic completenessGowdy symmetryhyperbolic differential equations\(T^2\) symmetry
Relativistic cosmology (83F05) Wave equation (35L05) Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.) (83C55) Quantum hydrodynamics and relativistic hydrodynamics (76Y05) Exact solutions to problems in general relativity and gravitational theory (83C15)
Cites Work
- Unnamed Item
- On space-times with U(1)\(\times U(1)\) symmetric compact Cauchy surfaces
- Future stability of the Einstein-non-linear scalar field system
- Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: Topologies and boundary conditions
- Global foliations of vacuum spacetimes with \(T^2\) isometry
- On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry
- Global foliations of matter spacetimes with Gowdy symmetry
- Global aspects of the Cauchy problem in general relativity
- Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville. (Cauchy problem for the Einstein-Liouville integro-differential system)
- The Einstein–Vlasov scalar field system with Gowdy symmetry in the expanding direction
- On the nature of initial singularities for solutions of the Einstein–Vlasov-scalar field system with surface symmetry
- On the EinsteinVlasov system with hyperbolic symmetry
- On the area of the symmetry orbits in T 2 symmetric spacetimes with Vlasov matter