Extended type \(k\)-Mittag-Leffler function and its applications
DOI10.1007/s40819-019-0656-5zbMath1414.26016OpenAlexW2945942474WikidataQ127865652 ScholiaQ127865652MaRDI QIDQ2001772
M. Kamarujjama, Juan. J. Nieto, Owais khan, Nabiullah Khan
Publication date: 11 July 2019
Published in: International Journal of Applied and Computational Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40819-019-0656-5
H-function of two variablesfractional calculus operators\(k\)-Mittag-Leffler function of two variables
Fractional derivatives and integrals (26A33) Mittag-Leffler functions and generalizations (33E12) Generalized hypergeometric series, ({}_pF_q) (33C20)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some generalized Riemann-Liouville \(k\)-fractional integral inequalities
- Some fractional integral formulas for the Mittag-Leffler type function with four parameters
- The general solution for impulsive differential equations with Riemann-Liouville fractional-order \(q\in (1,2)\)
- New concepts of fractional quantum calculus and applications to impulsive fractional \(q\)-difference equations
- On fractional integral inequalities involving hypergeometric operators
- Certain Hermite-Hadamard type inequalities via generalized \(k\)-fractional integrals
- Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials
- On the solutions of certain fractional kinetic equations involving \(k\)-Mittag-Leffler function
- Computation of new class of integrals involving generalized Galue type Struve function
- Certain inequalities involving the fractional \(q\)-integral operators
- Some new Saigo type fractional integral inequalities and their \(q\)-analogues
- Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions
- Certain Grüss type inequalities involving the generalized fractional integral operator
- An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
- Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22--26, 2016
- On a generalization of Mittag-Leffler function and its properties
- Fractional integrals and solution of fractional kinetic equations involving \(k\)-Mittag-Leffler function
- A Mittag-Leffler-type function of two variables
- A study of fractional integral operators involving a certain generalized multi‐index Mittag‐Leffler function
- The Asymptotic Expansion of the Generalized Bessel Function
- Fractional Calculus: Integral and Differential Equations of Fractional Order
- Certain formulas involving a multi-index Mittag-Leffler function
- New aspects of fractional Biswas–Milovic model with Mittag-Leffler law
- A note on fractional integral operator associated with multiindex Mittag-Leffler functions
- Some inequalities involving Hadamard‐type k‐fractional integral operators
- Generalized fractional integrals of product of twoH-functions and a general class of polynomials
This page was built for publication: Extended type \(k\)-Mittag-Leffler function and its applications