Solution properties of a 3D stochastic Euler fluid equation
From MaRDI portal
Publication:2003396
DOI10.1007/s00332-018-9506-6zbMath1433.60051arXiv1704.06989OpenAlexW2607645898WikidataQ129066961 ScholiaQ129066961MaRDI QIDQ2003396
Darryl D. Holm, Dan Crisan, Franco Flandoli
Publication date: 8 July 2019
Published in: Journal of Nonlinear Science (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1704.06989
PDEs in connection with fluid mechanics (35Q35) Applications of stochastic analysis (to PDEs, etc.) (60H30) Stochastic partial differential equations (aspects of stochastic analysis) (60H15)
Related Items (51)
Stochastic parametrization of the Richardson triple ⋮ Stochastic evolution of augmented Born-Infeld equations ⋮ Global existence, blow-up and stability for a stochastic transport equation with non-local velocity ⋮ Solution properties of the incompressible Euler system with rough path advection ⋮ On a stochastic Camassa-Holm type equation with higher order nonlinearities ⋮ Predicting uncertainty in geometric fluid mechanics ⋮ Variational principles for fluid dynamics on rough paths ⋮ A geometric framework for stochastic shape analysis ⋮ A consistent stochastic large-scale representation of the Navier-Stokes equations ⋮ Implications of Kunita-Itô-Wentzell formula for \(k\)-forms in stochastic fluid dynamics ⋮ Theoretical analysis and numerical approximation for the stochastic thermal quasi-geostrophic model ⋮ Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa-Holm system ⋮ Martingale solutions in stochastic fluid-structure interaction ⋮ Sharp Nonuniqueness of Solutions to Stochastic Navier–Stokes Equations ⋮ Strong solutions to a nonlinear stochastic aggregation-diffusion equation ⋮ Stochastic Lagrangian perturbation of Lie transport and applications to fluids ⋮ Noise effects in some stochastic evolution equations: global existence and dependence on initial data ⋮ An implementation of Hasselmann’s paradigm for stochastic climate modelling based on stochastic Lie transport * ⋮ Variational Principles on Geometric Rough Paths and the Lévy Area Correction ⋮ Well-posedness for a stochastic 2D Euler equation with transport noise ⋮ On the stochastic Euler-Poincaré equations driven by pseudo-differential/multiplicative noise ⋮ Invariant measures for a stochastic nonlinear and damped 2D Schrödinger equation ⋮ Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise ⋮ Noise and dissipation on coadjoint orbits ⋮ Incompressible Euler equations with stochastic forcing: a geometric approach ⋮ A structure preserving stochastic perturbation of classical water wave theory ⋮ Regularized vortex approximation for 2D Euler equations with transport noise ⋮ On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena ⋮ Numerically Modeling Stochastic Lie Transport in Fluid Dynamics ⋮ A Particle Filter for Stochastic Advection by Lie Transport: A Case Study for the Damped and Forced Incompressible Two-Dimensional Euler Equation ⋮ Stochastic mean-field approach to fluid dynamics ⋮ On a rough perturbation of the Navier-Stokes system and its vorticity formulation ⋮ Wave breaking for the stochastic Camassa-Holm equation ⋮ Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in \(\mathbb{R}^2\) ⋮ Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations ⋮ Stochastic wave-current interaction in thermal shallow water dynamics ⋮ 2D Euler equations with Stratonovich transport noise as a large-scale stochastic model reduction ⋮ Stochastic closures for wave-current interaction dynamics ⋮ The Burgers' equation with stochastic transport: shock formation, local and global existence of smooth solutions ⋮ Circulation and Energy Theorem Preserving Stochastic Fluids ⋮ A local-in-time theory for singular SDEs with applications to fluid models with transport noise ⋮ On the well-posedness of stochastic Boussinesq equations with transport noise ⋮ Symmetry actuated closed-loop Hamiltonian systems ⋮ Stochastic Navier-Stokes equations and related models ⋮ Noise effect in a stochastic generalized Camassa-Holm equation ⋮ Modelling the climate and weather of a 2D Lagrangian-averaged Euler-Boussinesq equation with transport noise ⋮ Lagrangian averaged stochastic advection by Lie transport for fluids ⋮ Lyapunov exponents of two stochastic Lorenz 63 systems ⋮ Uniqueness of martingale solutions for the stochastic nonlinear Schrödinger equation on 3d compact manifolds ⋮ From additive to transport noise in 2D fluid dynamics ⋮ Stochastic effects of waves on currents in the ocean mixed layer
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations
- Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows
- Nonlinear evolution equations and the Euler flow
- Well-posedness of the transport equation by stochastic perturbation
- The three-dimensional Euler equations: Where do we stand?
- Existence of a local smooth solution in probability to the stochastic Euler equations in \(\mathbb R^3\)
- Semigroups of linear operators and applications to partial differential equations
- Remarks on the breakdown of smooth solutions for the 3-D Euler equations
- Compact sets in the space \(L^ p(0,T;B)\)
- The Euler-Poincaré equations and semidirect products with applications to continuum theories
- On the splitting-up method and stochastic partial differential equations
- Martingale and stationary solutions for stochastic Navier-Stokes equations
- Existence of strong solutions for Itô's stochastic equations via approximations
- Noise prevents infinite stretching of the passive field in a stochastic vector advection equation
- A concise course on stochastic partial differential equations
- Groups of diffeomorphisms and the motion of an incompressible fluid
- Vorticity and Incompressible Flow
- Noise Prevents Collapse of Vlasov-Poisson Point Charges
- Stochastic Equations in Infinite Dimensions
- On the approximation of stochastic partial differential equations II
- STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE
- Stochastic partial differential equations with unbounded coefficients and applications. III
- Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics
- Stochastic Navier--Stokes Equations for Turbulent Flows
- Geometric constraints on potentially
- Circulation and Energy Theorem Preserving Stochastic Fluids
- Variational principles for stochastic fluid dynamics
- A stochastic Lagrangian representation of the three‐dimensional incompressible Navier‐Stokes equations
- Fluid flow dynamics under location uncertainty
- White noise in space and time and the cylindrical wiener process
This page was built for publication: Solution properties of a 3D stochastic Euler fluid equation