\(L^p\)-multipliers sensitive to the group structure on nilpotent Lie groups
From MaRDI portal
Publication:2003605
DOI10.1007/s00041-018-9640-4zbMath1423.42017OpenAlexW2895928561MaRDI QIDQ2003605
Publication date: 9 July 2019
Published in: The Journal of Fourier Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00041-018-9640-4
Fourier transformsingular integralsLittlewood-Paley theoryflag kernelssymbolic calculushomogeneous groups\(L^p\)-multipliersHörmander metrics
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Multipliers for harmonic analysis in several variables (42B15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Singular integrals with flag kernels on homogeneous groups, I
- Parametrix constructions for right invariant differential operators on nilpotent groups
- The Melin calculus for general homogeneous groups
- Maximal and singular integral operators via Fourier transform estimates
- The Strong Maximal Function on a Nilpotent Group
- Schwartz spaces associated with some non-differential convolution operators on homogeneous groups
- The weyl calculus of pseudo-differential operators
- A note on Schrödinger operators with polynomial potentials
- Lp-boundedness of flag kernels on homogeneous groups
- Formule de Weyl pour les groupes de Lie nilpotents.
- Singular integrals with flag kernels and analysis on quadratic CR manifolds
This page was built for publication: \(L^p\)-multipliers sensitive to the group structure on nilpotent Lie groups