Galois descent for higher Brauer groups
From MaRDI portal
Publication:2004036
DOI10.1007/s00229-019-01170-5zbMath1451.14057arXiv1802.08902OpenAlexW2990676524WikidataQ126663814 ScholiaQ126663814MaRDI QIDQ2004036
Publication date: 14 October 2020
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1802.08902
Étale and other Grothendieck topologies and (co)homologies (14F20) Brauer groups of schemes (14F22) Algebraic cycles and motivic cohomology ((K)-theoretic aspects) (19E15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(K_2\)-cohomology and the second Chow group
- Algebraic cycles and higher K-theory
- La conjecture de Weil. II
- For an unconditional theory of motives
- Classes of motivic étale cycles
- Théoreme de Lefschetz et critères de dégénérescence de suites spectrales
- Descente galoisienne sur le groupe de Brauer
- Notes on absolute Hodge classes
- ÉTALE MOTIVIC COHOMOLOGY AND ALGEBRAIC CYCLES
- A finiteness theorem for the Brauer group of abelian varieties and 𝐾3 surfaces
- The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky
- A remark on the Tate Conjecture
This page was built for publication: Galois descent for higher Brauer groups