A generalization of the Saint-Venant's principle for an elastic body with dipolar structure
From MaRDI portal
Publication:2005542
DOI10.1007/s00161-019-00827-6zbMath1443.74147OpenAlexW2973134372WikidataQ127242222 ScholiaQ127242222MaRDI QIDQ2005542
Eduard M. Craciun, Andreas Öchsner, Marin I. Marin
Publication date: 8 October 2020
Published in: Continuum Mechanics and Thermodynamics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00161-019-00827-6
Related Items
Moore-Gibson-Thompson thermoelasticity in the context of double porous materials ⋮ A porothermoelasticity theory for anisotropic medium ⋮ Investigation of interlaminar stresses surrounding circular hole in composite laminates under uniform heat flux ⋮ Thermoelastic damping and frequency shift in micro/nano-ring resonators considering the nonlocal single-phase-lag effect in the thermal field
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some spatial decay estimates in continuum dynamics
- Thermomechanics of the interface between a body and its environment
- On the spatial decay of solutions in the nonlinear theory of heat conduction
- On Saint-Venant's principle in linear elastodynamics
- On Saint-Venant's principle for microstretch elastic bodies
- An initial boundary value problem for modeling a piezoelectric dipolar body
- Propagation of a straight crack in dipolar elastic bodies
- Decay estimates and energy bounds for porous elastic cylinders
- A polynomial way to control the decay of solutions for dipolar bodies
- Existence and stability results for thermoelastic dipolar bodies with double porosity
- Strain energy density bounds for linear anisotropic elastic materials
- Multipolar continuum mechanics
- A spatial decay estimate for the heat equation
- Uniformity in shells
- Saint-Venant's principle
- On the spatial decay of solutions of the heat equation
- Micro-structure in linear elasticity
- Theory of thermo-microstretch elastic solids
- On Saint-Venant’s principle in dynamic linear viscoelasticity
- Spatial decay estimates in transient heat conduction
- Complements of Higher Mathematics
- Microcontinuum Field Theories