Adaptive \(hp\)-FEM for eigenvalue computations
From MaRDI portal
Publication:2009761
DOI10.1007/s10092-019-0335-2zbMath1427.65351OpenAlexW2979262729MaRDI QIDQ2009761
Publication date: 29 November 2019
Published in: Calcolo (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10092-019-0335-2
Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs (65N50) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
A meshless Chebyshev collocation method for eigenvalue problems of the Helmholtz equation, Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Convergence and optimality of \({\mathbf {hp}}\)-\textbf{AFEM}
- An oscillation-free adaptive FEM for symmetric eigenvalue problems
- Estimation of the effect of numerical integration in finite element eigenvalue approximation
- Equilibrated residual error estimates are \(p\)-robust
- A posteriori error estimation and adaptive mesh-refinement techniques
- An optimal adaptive FEM for eigenvalue clusters
- On \(p\)-robust saturation for \(hp\)-AFEM
- Finite element approximation of eigenvalue problems
- An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity
- Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- AN A POSTERIORI ERROR ESTIMATOR FOR hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC EIGENVALUE PROBLEMS
- A Convergent Adaptive Method for Elliptic Eigenvalue Problems
- CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
- Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method
- A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems
- Tree Approximation for hp-Adaptivity
- A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square
- Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations
- Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations
- On residual-based a posteriori error estimation in hp-FEM