Poisson-Bergman type operators on Lipschitz and mixed norm spaces in the real ball
From MaRDI portal
Publication:2010152
DOI10.1134/S1995080219080043zbMath1425.47005OpenAlexW2971431005MaRDI QIDQ2010152
Publication date: 3 December 2019
Published in: Lobachevskii Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s1995080219080043
Lipschitz spaceharmonic functionprojectionBergman operatormixed norm spaceunit ball in \(\mathbb{R} ^n\)
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Integral operators (47G10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the fractional integro-differentiation operator in \(\mathbb{R}^n\)
- Weighted integrals and Bloch spaces of \(n\)-harmonic functions on the polydisc
- Reproducing kernels for harmonic Bergman spaces of the unit ball
- Continuous inclusions and Bergman type operators in \(n\)-harmonic mixed norm spaces on the polydisc
- Harmonic Bergman functions on the unit ball in \(\mathbb R^n\)
- Harmonic Bergman spaces with small exponents in the unit ball
- Continuous embeddings in harmonic mixed norm spaces on the unit ball in \(\mathbb{R}^n\)
- The dual of an inequality of Hardy and Littlewood and some related inequalities
- ON WEIGHTED HARMONIC BERGMAN SPACES
- The Hölder continuity of the Bergman projection and proper holomorphic mappings
- Integral Representations for Riesz Systems in the Unit Ball and some Applications
- THEOREMS CONCERNING MEAN VALUES OF ANALYTIC OR HARMONIC FUNCTIONS