Nordhaus-Gaddum and other bounds for the chromatic edge-stability number
From MaRDI portal
Publication:2011157
DOI10.1016/j.ejc.2019.103042zbMath1428.05091OpenAlexW2982633519WikidataQ126861856 ScholiaQ126861856MaRDI QIDQ2011157
Sandi Klavžar, Mina Nahvi, Nazanin Movarraei, Saieed Akbari
Publication date: 28 November 2019
Published in: European Journal of Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.ejc.2019.103042
Related Items
On the chromatic vertex stability number of graphs ⋮ On the Total Chromatic Edge Stability Number and the Total Chromatic Subdivision Number of Graphs ⋮ On the dominated chromatic number of certain graphs ⋮ Critical graphs for the chromatic edge-stability number ⋮ A Gallai’s Theorem type result for the edge stability of graphs ⋮ On the chromatic edge stability index of graphs ⋮ On the vertex stability numbers of graphs ⋮ On critical graphs for the chromatic edge-stability number ⋮ Tight bounds on the chromatic edge stability index of graphs ⋮ SOME EXTREMAL RESULTS ON THE CHROMATIC STABILITY INDEX
Cites Work
- Unnamed Item
- Unnamed Item
- Nordhaus-Gaddum theorem for the distinguishing chromatic number
- Bipartizing fullerenes
- Total weight choosability of Mycielski graphs
- The bipartite edge frustration of graphs under subdivided edges and their related sums
- Tight Nordhaus-Gaddum-type upper bound for total-rainbow connection number of graphs
- Bondage numbers of Mycielski graphs
- The bipartite edge frustration of extension of splice and link graphs
- Bipartite subgraphs of graphs with maximum degree three
- Nordhaus-Gaddum bounds for total Roman domination
- On the chromatic edge stability number of graphs
- Improving a Nordhaus-Gaddum type bound for total domination using an algorithm involving vertex disjoint stars
- Computing the bipartite edge frustration of fullerene graphs
- Bipartite subgraphs of triangle-free subcubic graphs
- Sur le coloriage des graphs