Gelfand-Kirillov dimension and reducibility of scalar generalized Verma modules
From MaRDI portal
Publication:2011169
DOI10.1007/s10114-019-9069-yzbMath1428.22015OpenAlexW2980587330WikidataQ127014156 ScholiaQ127014156MaRDI QIDQ2011169
Publication date: 28 November 2019
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-019-9069-y
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Simple, semisimple, reductive (super)algebras (17B20) Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) (22E47)
Related Items (2)
Gelfand-Kirillov dimension and reducibility of scalar generalized Verma modules for classical Lie algebras ⋮ Reducibility of generalized Verma modules for Hermitian symmetric pairs
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the reducibility of scalar generalized Verma modules of abelian type
- Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren
- Gelfand-Kirillov dimension for Harish-Chandra modules
- Resolutions and Hilbert series of determinantal varieties and unitary highest weight modules.
- On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras
- Reducibility of generalized Verma modules for Hermitian symmetric pairs
- Leading weight vectors and homomorphisms between generalized Verma modules
- The Gelfand-Kirillov dimension of a unitary highest weight module
- Homomorphisms Between Generalized Verma Modules
- On Reducibility Criterions for Scalar Generalized Verma Modules Associated to Maximal Parabolic Subalgebras
- Gelfand–Kirillov Dimensions of Highest Weight Harish-Chandra Modules for $\boldsymbol{{SU}(p,q)}$
This page was built for publication: Gelfand-Kirillov dimension and reducibility of scalar generalized Verma modules