In metric-measure spaces Sobolev embedding is equivalent to a lower bound for the measure
From MaRDI portal
Publication:2014389
DOI10.1007/s11118-016-9605-7zbMath1381.46032OpenAlexW2555991684WikidataQ59608156 ScholiaQ59608156MaRDI QIDQ2014389
Publication date: 11 August 2017
Published in: Potential Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11118-016-9605-7
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Analysis on metric spaces (30L99)
Related Items (9)
A Singular Moser-Trudinger Inequality on Metric Measure Space ⋮ Measure density and embeddings of Hajłasz-Besov and Hajłasz-Triebel-Lizorkin spaces ⋮ Embedding of fractional Sobolev spaces is equivalent to regularity of the measure ⋮ A note on metric-measure spaces supporting Poincaré inequalities ⋮ Sobolev embeddings for fractional Hajłasz-Sobolev spaces in the setting of rearrangement invariant spaces ⋮ Looking for compactness in Sobolev spaces on noncompact metric spaces ⋮ Relatively compact sets in variable-exponent Lebesgue spaces ⋮ Orlicz-Sobolev embeddings, extensions and Orlicz-Poincaré inequalities ⋮ Sobolev embedding for \(M^{1, p}\) spaces is equivalent to a lower bound of the measure
Cites Work
- Lectures on analysis on metric spaces
- Sobolev spaces on an arbitrary metric space
- Sobolev embeddings, extensions and measure density condition
- Sobolev met Poincaré
- Sobolev Spaces on Metric Measure Spaces
- Fractional Sobolev extension and imbedding
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: In metric-measure spaces Sobolev embedding is equivalent to a lower bound for the measure