An approximation method for convolution Calderón-Zygmund operators
From MaRDI portal
Publication:2015751
DOI10.1155/2013/572967zbMath1291.42017OpenAlexW2095499732WikidataQ58917144 ScholiaQ58917144MaRDI QIDQ2015751
Publication date: 23 June 2014
Published in: Abstract and Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2013/572967
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Boundedness of convolution-type operators on certain endpoint Triebel-Lizorkin spaces
- Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings
- A characterization of Hajłasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions
- Theory of function spaces
- BCR algorithm and the \(T(b)\) theorem
- Blocking analysis and \(T(1)\) theorem
- Biorthogonal wavelets for fast matrix computations
- Fast wavelet transforms and numerical algorithms I
- CONTINUITY OF CALDERÓN–ZYGMUND OPERATORS ON BESOV OR TRIEBEL–LIZORKIN SPACES
- Fast Wavelet Based Algorithms for Linear Evolution Equations
- The Use of Wavelets in the Operator Expansion Method for Time-Dependent Acoustic Obstacle Scattering
- Wavelet bases and entropy numbers in weighted function spaces
- Wavelet decomposition of Calderón-Zygmund operators on function spaces