A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods
DOI10.1007/s11075-014-9856-6zbMath1311.65066OpenAlexW2003894104WikidataQ57952646 ScholiaQ57952646MaRDI QIDQ2017614
Reza Ghanbari, Saman Babaie-Kafaki
Publication date: 23 March 2015
Published in: Numerical Algorithms (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11075-014-9856-6
unconstrained optimizationnumerical exampleglobal convergencelarge-scale optimizationconjugate gradient methodPolak-Ribière-Polyak method
Numerical mathematical programming methods (65K05) Large-scale problems in mathematical programming (90C06) Nonlinear programming (90C30)
Related Items (8)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An eigenvalue study on the sufficient descent property of a modified Polak-Ribière-Polyak conjugate gradient method
- Two new conjugate gradient methods based on modified secant equations
- Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
- Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
- Hybrid conjugate gradient algorithm for unconstrained optimization
- Efficient hybrid conjugate gradient techniques
- Global convergence result for conjugate gradient methods
- Global convergence of the Fletcher-Reeves algorithm with inexact linesearch
- A quadratic hybridization of Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods
- A modified Polak–Ribière–Polyak conjugate gradient algorithm for unconstrained optimization
- A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence
- Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search
- Global Convergence Properties of Conjugate Gradient Methods for Optimization
- Restart procedures for the conjugate gradient method
- TWO MODIFIED HYBRID CONJUGATE GRADIENT METHODS BASED ON A HYBRID SECANT EQUATION
- A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search
- A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search
- Function minimization by conjugate gradients
- CUTEr and SifDec
- Convergence Conditions for Ascent Methods
- The conjugate gradient method in extremal problems
- Benchmarking optimization software with performance profiles.
This page was built for publication: A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods