The variable exponent Sobolev capacity and quasi-fine properties of Sobolev functions in the case \(p^-=1\)
From MaRDI portal
Publication:2019089
DOI10.1016/j.jmaa.2013.08.063zbMath1347.46025OpenAlexW1976339245MaRDI QIDQ2019089
Matti Nuortio, Heikki Hakkarainen
Publication date: 27 March 2015
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2013.08.063
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Potentials and capacities, extremal length and related notions in higher dimensions (31B15)
Related Items (3)
The variable exponent BV-Sobolev capacity ⋮ Removability of zero modular capacity sets ⋮ Differentiability of logarithmic Besov functions in terms of capacities
Cites Work
- The variable exponent BV-Sobolev capacity
- Lebesgue and Sobolev spaces with variable exponents
- Nonlinear potential theory on metric spaces
- The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values
- Some properties of variable Sobolev capacity
- Overview of differential equations with non-standard growth
- Lebesgue points for Sobolev functions on metric spaces.
- Sobolev capacity of the space \(W^{1,p(\cdot)} (\mathbb{R}^n)\)
- Hölder quasicontinuity in variable exponent Sobolev spaces
- On the density of smooth functions in Sobolev-Orlicz spaces
- Density of smooth functions in W k, p(x) ( Ω )
- On the σ-class generated by open balls
- On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators
- Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The variable exponent Sobolev capacity and quasi-fine properties of Sobolev functions in the case \(p^-=1\)