Averaging and orthogonal operators on variable exponent spaces \(L^{p(\cdot)}(\varOmega)\)
From MaRDI portal
Publication:2019220
DOI10.1016/j.jmaa.2013.11.048zbMath1320.42014OpenAlexW2013927325MaRDI QIDQ2019220
César Ruiz, Francisco L. Hernández
Publication date: 27 March 2015
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2013.11.048
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25) Function spaces arising in harmonic analysis (42B35)
Related Items (4)
Corrigendum to ``Averaging and orthogonal operators on variable exponent spaces \(L^{p(\cdot)}(\Omega)\) ⋮ On the structure of variable exponent spaces ⋮ Nonlinear subsets of function spaces and spaceability ⋮ Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lebesgue and Sobolev spaces with variable exponents
- Orlicz spaces and modular spaces
- \(l_q\)-structure of variable exponent spaces
- Indices, convexity and concavity in Musielak-Orlicz spaces
- An example of a space of \(L^{p(x)}\) on which the Hardy-Littlewood maximal operator is not bounded
- Ranges of positive contractive projections in Nakano spaces
- On geometric properties of the spaces \(L^{p(x)}\)
- Some remarks on the Hardy-Littlewood maximal function on variable \(L^p\) spaces
- Maximal functions on Musielak--Orlicz spaces and generalized Lebesgue spaces
- Embeddings between discrete weighted Lebesgue spaces with variable exponents
- On some questions related to the maximal operator on variable 𝐿^{𝑝} spaces
- Averaging operators on l^{p_n} and L^p(x)
- Modulared sequence spaces
This page was built for publication: Averaging and orthogonal operators on variable exponent spaces \(L^{p(\cdot)}(\varOmega)\)