A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces
DOI10.1007/s00028-020-00565-2zbMath1464.35269OpenAlexW3008051356MaRDI QIDQ2021536
Publication date: 27 April 2021
Published in: Journal of Evolution Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00028-020-00565-2
Littlewood-Paley theorycritical Besov spacesglobal well-posednesscompressible Navier-Stokes-Korteweg system
PDEs in connection with fluid mechanics (35Q35) Maximal functions, Littlewood-Paley theory (42B25) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics (76N10) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Related Items (9)
Cites Work
- Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on \(\mathbb{R}^3\)
- Existence of global weak solution for compressible fluid models of Korteweg type
- Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces
- A Lagrangian approach for the compressible Navier-Stokes equations
- Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force
- Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations
- Strong solutions for a compressible fluid model of Korteweg type
- Wellposedness and stability results for the Navier-Stokes equations in \(\mathbb R^3\)
- Existence of strong solutions for nonisothermal Korteweg system
- On the thermomechanics of interstitial working
- Existence of strong solutions to the stationary compressible Navier-Stokes-Korteweg equations with large external force
- Global solutions of a high dimensional system for Korteweg materials
- Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces
- Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data
- Optimal decay rates for the compressible fluid models of Korteweg type
- Optimal decay rates of the compressible fluid models of Korteweg type
- Existence of a Global Strong Solution and Vanishing Capillarity-Viscosity Limit in One Dimension for the Korteweg System
- Fourier Analysis and Nonlinear Partial Differential Equations
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- Solutions for Two-Dimensional System for Materials of Korteweg Type
- Optimal decay estimate of mild solutions to the compressible Navier‐Stokes‐Korteweg system in the critical Besov space
- On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems
- Vanishing Capillarity Limit of the Compressible Fluid Models of Korteweg Type to the Navier--Stokes Equations
- Existence of solutions for compressible fluid models of Korteweg type
This page was built for publication: A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces