The multi-cover persistence of Euclidean balls
DOI10.1007/s00454-021-00281-9zbMath1468.62436OpenAlexW3149441678WikidataQ114229311 ScholiaQ114229311MaRDI QIDQ2022628
Georg Osang, Herbert Edelsbrunner
Publication date: 29 April 2021
Published in: Discrete \& Computational Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00454-021-00281-9
Persistent homology and applications, topological data analysis (55N31) Other problems of combinatorial convexity (52A37) Combinatorial aspects of tessellation and tiling problems (05B45) Convex sets in (n) dimensions (including convex hypersurfaces) (52A20) Tilings in (n) dimensions (aspects of discrete geometry) (52C22) Topological data analysis (62R40)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Geometric inference for probability measures
- Equivariant discrete Morse theory
- Voronoi diagrams and arrangements
- Morse theory for cell complexes
- Witnessed \(k\)-distance
- Zigzag persistence
- Order-\(k\) \(\alpha\)-hulls and \(\alpha\)-shapes
- Sur la forme des espaces topologiques et sur les points fixes des représentations
- The Morse theory of Čech and Delaunay complexes
- A SIMPLE ON-LINE RANDOMIZED INCREMENTAL ALGORITHM FOR COMPUTING HIGHER ORDER VORONOI DIAGRAMS
- On k-Nearest Neighbor Voronoi Diagrams in the Plane
- Multiple packing and covering of the plane with circles
- Zigzag persistent homology and real-valued functions
- A new duality result concerning Voronoi diagrams
This page was built for publication: The multi-cover persistence of Euclidean balls